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Percolation Scale Effects in Metal-Insulator Thin Films 

Aharon Kapitulnik I and Guy Deutscher 2 

Thin metal films near their continuity threshold and metal-insulator mixture 
films near their metal-insulator transition are well described by the percolation 
theory. Here we demonstrate that statement by reviewing some geometrical 
measurements done on both types of thin films. We then comment on the 
measurements of the other physical quantities. 
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1. INTRODUCTION 

Meta l - insu la to r  thin films ~1'2) were shown recently to exhibit  percola t ion 
characterist ics.  (1'3'4) This happens in the case where the metal l ic  grains are 
large enough to be viewed as "class ical .  ''(4) An  example  is when such a 
system having a metal  concentrat ion p will conduct  in a metal l ic  fashion 
only i f p  > pc (1-8) where Pc is the percola t ion threshold.  

Much of  the current  interest in the propert ies  of  such systems concen- 
trates on their geometrical  structure in the vicinity of  the percola t ion 
threshold. (~'6.x~) As the concentra t ion approaches  Pc, the pair  connectedness 
length ~ diverges, ~oc ( p - p c )  -v. I t  is also argued that  on large length 
scales, L >> ~, the infinite cluster which appears  for p > Pc, is homogeneous  
with a densi ty Poo oc ( p -  pc)  ~.(8) 

Two kinds of  systems are reported in this review. The first is of  thin 
metal  film deposi ted on an insulating substrate  (~,3,4) The second is the case 
of a mixture of  metal  and insulator,  (1,3,4) immicible  in each other. The 
former will be classified as a two-dimensional  system where the percola t ion  
threshold is identified as the surface coverage for which conduct ivi ty  appears  
for the first t ime (an infinite metall ic  cluster which connects the two ends of  
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the system exists). The second case is more complicated and involves a 
crossover from two-dimensional behavior for very thin films to a three- 
dimensional for very thick films. 

In this paper we concentrate on the geometrical scale effeets for both 
these systems. This means that we work mainly in the regime where the 
length scale is smaller than the relevant correlation length. 

In the second section we show some results on the geometrical 
investigation of thin Pb films. We comment there on the validity of our 
results to other types of metals. 

As it is more difficult to investigate geometrical effects in a three- 
dimensional system, we do it by virtue of the two-dimensional to three- 
dimensional crossover in the resistivity. This phenomenon involves the two- 
dimensional correlation length which governs the percolation transition as 
well as the three-dimensional one which tells us how much we are scale 
dependent with the thickness. This is discussed in Section 3. 

In the last section we conclude with some remarks on the relevance of 
those geometrical effects to the measurements of physical quantities 
involving conduction and superconductivity. 

2. THIN METAL FILMS (TWO DIMENSIONAL SYSTEMS) 

The structural analysis of thin metal films is based on the fact that all 
the structural information can be interpreted from the electron micrographs. 
For this purpose, transmission electron microscopy (TEM) is an ideal 
tool. (1'2) Films were deposited onto microscope grids or alternatively on 
some colloidon layer that could be removed later and placed onto grids. The 
type of substrate chosen played a particular role in controlling the internal 
structure or the basic aggregation size. Nevertheless, as we shall show later, 
for a certain class of metal films the resultant structure is indeed a 
percolation like near the films continuity threshold. Such a film of Pb 
deposited onto an amorphous Ge substrate is shown in Fig. i. The structure 
indeed looks random in the scene that loops and clusters of all sizes are 
present. The basic aggregation here is the Pb crystallite size ,-~250 A in 
diameter. We assume ~3) that the same structure will occure for all 
metal-substrate combinations for which the mean diffusion length on the 
substrate is at most comparable to the crystallite size (providing a low 
surface tension). The only effect that will differentiate all those systems is the 
crystallite size, D c, which will cause a different percolation threshold due to 
short-range correlations (the "universality" concept). (5) 

For more complicated films, e.g., Sn deposited SiO, the conditions 
(static) are so strong that one should take into account also the preparation 
process. This will result in a modified percolation theory. (4) 
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Fig. 1. TEM micrograph of Pb (white areas) deposited onto amorphous Ge; typical width 
of Pb crystallites: ~250 ~.o 
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Thus, with the restriction of short-range correlations one can rescale, 
e.g., the crystallite to be the basic lattice site and the intercrystallite distance 
a to be the basic lattice constant. The short-range surface diffusion provides 
us with random occupancy of those sites and thus with a percolation type of 
structure. (6) 

To perform quantitative analysis, the pictures were digitized and 
recovered in the computer very carefully to include the delicate structure of 
weak connections and weak separation between clusters. (7) We have used 
different analysis for pictures below the percolation (continuity) threshold 
and for those above it. 

Below the threshold we measured the number distribution N s of clusters 
of size (area) S. It was found that for large enough clusters, a power law 

N s ~ S  -~ (1) 

exists, and we have found r = 2.1 • 0.2. This value of r is in agreement with 
theoretical prediction (8) and other experimental results. (9'1~ The saturation 
for small s is also in accord with theory. ~8) 

Above the threshold an infinite cluster of metal crystallites that 
connects the two ends of the sample exists. To analyze it, we note that for 
length scales below the percolation correlation length, the infinite cluster is a 
self-similar object having an anomalous mass exponent(l 1-13): 

M ( L ) oc L a, a >> L >> ~ (2) 

d" is the fractal dimensionality, being ~ 1.9 for two-dimensional 
percolation. ~1~) Moreover, for length scales above ~ a regular behaviour is 
expected, thus 

M ( L )  oc P ~ L  d, L >> ~ (3) 

where d is the spatial dimensionality and P~  is the density of the infinite 
cluster. 

The infinite cluster is composed of a backbone through which electrical 
current flows and dangling bonds hanging on it. Together they give the mass 
M. The mass of the backbone, B(L) ,  should also scale with a different fractal 
dimension de in the short length scales regime and is expected to be constant 
for large length scales. We thus expect 

B ( L )  ~ L d~, a ,~ L ,~ ~ (4) 

B ( L )  oc B ~ L  a L ~ ~ (5) 

Boo is the density of the backbone. 
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The analysis of the Pb films was in excellent agreement with those 
predictions. Figure 2 shows log-log plot of M ( L ) / L  ~ = #(L) and B(L) /L  2 for 
the infinite cluster and the backbone, respectively. The picture chosen was 
very close to the percolation threshold and thus # was large. This prevented 
us from seeing a crossover like predicted in Eqs. (3) and (5). Nevertheless, 
the slopes agreed with Eqs. (2) and (4), yielding d = 1.90 :t: 0.02 and d 8 = 
1.65 • 0.05, in excellent agreement with theories.(H'14'~7'~8) 

To observe the crossover effect (H) we used micrographs of depositions 
far from the threshold. Figure 3 shows typical crossover where ~ is identified 
as the break where the averaged density starts to be fiat. Both the crossover 
length and the plateau level are in agreement with what is expected from 
and Pc�9 for the investigated film. (6'7) 

To conclude our geometrical analysis in this two-dimensional system, 
we have measured the fluctuations of the mass of the infinite cluster in the 

Fig. 2. 
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Fig. 3. 
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Log-log plot of the averaged mass density vs. the length scale for a sample far from 
Pc. The crossover length, identified as ~ is marked. 

self-similar regime. Theory, confirmed by Monte Carlo results, predicts 
that(ZL 22) 

3 M ( L )  - (M(L)  -- M ( L ) )  oc (6) 

with d s = 2d. 
We thus measured this effect with the same micrograph shown in Fig. 2. 

We clearly observed a power law for large enough L with @ =  3.80 + 0.02. 
Another expected result is that in the region of  small L where the deviations 
around the straight line in Fig. 2 were big, in the case of  the second moment  
(AM 2) they were enhanced. This means that, as the statistics become purer 
the higher moments of  the mass distribution cannot be measured. 
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3. METAL-INSULATOR MIXTURES 
(THREE-DIMENSIONAL SYSTEMS) 

The case of metal-insulator (MI) mixture films is more complicated 
than the previous one. Also, micrographs of the composite can easily be 
produced; the observed structure, not being a two-dimensional one, prevent 
us from direct analysis. Nevertheless, qualitative points can be drawn. 

Two types of mixture films are observed when a metal and insulator are 
co-evaporated or cosputtered in a vaccum chamber. (1,2,3,19,20) They are the 
granular and the random structure. Each of them is a result of different 
preparation conditions. The granular material is composed of spherical 
metallic crystallites, embedded in an insulating amorphous matrix. For this 
structure the MI transition occurs for very high metallic concentration and 
the conduction mechanism is rather complicated, being mainly generated by 
activation of electrons between grains. Percolation effects do exist in such a 
structure but are very complicated. They are discussed extensively in Refs. 1, 
3, and 4. 

The random structure is simpler to analyze. It consists of metallic and 
insulating crystallites, randomly distributed in space to fill it. The simplest 
case to which we will refer is when both the metallic and the insulator 
crystallites are of the same size. Rescaling again, the crystallite size to be the 
basic site in the system, we end up with the random percolation 
problem. (21-24) Figure 4 shows typical micrograph of A1-Ge thin mixture 
film. This composite was used by us to study percolation effects. 

The A1 and Ge were co-evaporated onto heated glass substrates from 
two electron beam guns through a mask with slits to combined thickness 
between 600 and 4000A. On each substrate, up to 18 samples were 
obtained, with different metal concentrations due to different distances of the 
slits from the sources. The combined evaporation rate on all substrates was 
~20  A in a pressure of ~5 • 10 -6 Tort. 

Electrical measurements were performed using the four-terminal 
method. The resistivity of all those films was observed to diverge at some 
critical concentration of metal Pc. Typical log-log plot of the resistivity p 
versus the distance from the threshold concentration, P - P c ,  shown in 
Fig. 5. It shows a break in slope between two regions that can be fitted to 

P = Po(P - Pc)-~'  (7) 

Close to the MI threshold, Pc is that threshold and we measured /~ = 
0.9 + 0.25 averaged over all samples~ Far from that threshold the film should 
have a three-dimensional behavior and thus we chose p c = O . 1 5 ,  3 as the 

3 This is not expected to hold when the metal and the insulator crystallite sizes are very dif- 
ferent. 

822/36/5-6-21 
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Fig. 4. TEM micrograph of AI-Ge thin mixture film with ~30% vol. A1. "Blacks and 
whites" do not refer to the different constituents but to different orientations. 

three-dimensional  value for r andom percolat ion.  (23'27) We then measured p = 

2.1 + 0.5, again in excellent agreement with recent theories of 
percolat ion.  (28,31) 

The crossover is expected to occur  when the three-dimensional  (3D) 
correla t ion length ~3D (P) is of  the same order as the film thickness,  t. F r o m  
the measured  values of  t, p - Pc, and the equat ion 

~ , D = ~ 0 ( p - - p c )  - ' '  (8) 

where v3 ~ 0.9, we obtained ~o = 240 • 100. This is in agreement with the 
expectat ion that  ~o should be equal to the crystal l i te  size (in the case of  
A1-Ge is D c ~ 250 A)  t imes a mult ipl icat ive constant  b of  order  unity. (3~ 
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Fig. 5. Log-log plot of the resistivity vs. the distance from the true percolation threshold for 
A1-Ge film of thickness ~1200A. Insert shows the power law behavior in the far region 
where three-dimensional power law is observed. 

The above observat ion suggests another  check for the two-dimensional  
to three-dimensional  crossover,  namely,  to s tudy the thickness dependence of  

(23-32) 
Pc" 

Fini te  size scaling suggests that  (31) 

Pc(t) = Pc~ + (9) 

The data,  as presented in Fig. 6, are consistent  with Eq. (9). For  this 
case Pco~=0 .15 ,  again in excellent agreement with random percolat ion,  
indicat ing that  for large thickness we approach  the three-dimensional  regime 
of  this problem. The length t o which should satisfy t o = b ~3. D c is found 
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from the data to be 170 • 90, which means that t o ~ .  As expected, the slope 
of  Fig. 6 gives v 3 -- 0.9 + 0.2, one of  the best experimental measurements to 
our knowledge of  the three-dimensional percolation correlation length. 4 

We thus used in this case the crossover in resistivity to study 
geometrical effects in the self-similar regime L <~ ~. 

4. C O N C L U S I O N S  A N D  R E L E V A N C E  TO P H Y S I C A L  P R O P E R T I E S  

Percolation, while being a geometrical problem, controls a number of  
physical properties. The first is, of  course, the conductivity. We showed that 
the resistivity of  the thin mixture films diverges at the transition in a 
percolation fashion. As for the thin metal films, recently, using a novel 
technique with thin Au films, Palevski et  al.  {33) showed that Eq. (7) is 
satisfied for the two-dimensional system with the result p = 1.25 + 0.08 both, 
the accuracy of  the technique and the result are compatible with numerical 
or analytical methods.(28'29) 

4 Another important measurement used the critical current experiment to measure v3: see 
Ref. 35. 
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The existance of  large clusters sl ightly below Pc results in the divergence 
of  the dielectric (7) constant .  ~34) Measurements  in A g - K C 1  (34) have confirmed 

it exper imental ly  with the covert  exponent.  (34) 
The study of  superconduct ivi ty  in percola t ing films is of  special  interest 

because we are dealing here with a macroscopic  quantum phenomenon in a 
system with a well-defined disordered structure. Deta i led  considerat ions  of  
the cri t ical  field problem,  (36-3s) the cri t ical  current,  (36'38) and the supercon- 
ducting t ransi t ion (37) were observed in experiments.  ~3s'39) The study of  super- 

conduct ivi ty  in the presence of  local iza t ion effects in such systems was 
shown also to exhibit  scale effects due to the compl ica ted  structure. (4o) 

Thus, we hope that  this paper ,  which has dealt  main ly  with the 
geometry  of  those systems, s t imulated the reader  to see that  those scale 
effects can reveal a var ie ty  of  rich phenomena.  
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